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Lattice Gas Simulations of Osmosis 

E. G. F lekk0y ,  1 J. Feder,  1 and T. J0ssang ~ 

An analysis of the phenomenon of osmosis within the lattice gas model is 
presented. The model considered is a two-species version of the Frisch 
Hasslacher-Pomeau model with rest particles and a semipermeable membrane 
which is implemented as a boundary that blocks one species, but lets the other 
pass freely. In this way the equilibrium between a pure and a mixed subsystem 
can be studied. Analytic expressions for both the pressure difference and the 
fluctuations of this quantity are obtained from the entropy function for the 
lattice gas, and we find that these results are in good agreement with those 
obtained from simulation. The osmotic flow across the membrane is also 
studied. We characterize the concentration boundary layer, and an analytic 
expression for the osmotic permeability as a function of porosity is compared 
with results from simulations. 
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1. I N T R O D U C T I O N  

Since the lattice gas model  for the s imulat ion of two- and three-dimen- 

sional fluid flow was in t roduced by Frisch, Hasslacher, and  Pomeau  

( F H P )  (1) a series of applicat ions of the model  have appeared. These include 

extensions of the model  to several particle species for the s imulat ion of 
diffusion phenomena  (2) and  models with surfaces tension for s imulat ion of 
immiscible two-phase flow. (3 5) The flow of one particle species across a 

porous  membrane  has also been done. To our knowledge the present 
appl icat ion to the p h e n o m e n o n  of osmosis is the first ever done. 

For  the p h e n o m e n o n  of osmosis to occur there must  be a semiper- 
meable membrane  separat ing solut ions of different concentra t ions  and  
being impermeable  to the solute. The solvent, being able to pass through 
the membrane ,  will tend to flow toward the side of higher concentra t ion,  
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thereby diluting the solution on this side. In the case of no hydrostatic 
pressure difference across the membrane this process will lead to a steady 
flow of solvent. In the case of a closed system divided by a membrane the 
process of osmosis will support an equilibrium pressure difference across 
the membrane maximizing the entropy of the mixture. 

Osmosis is a central mechanism in many biological processes. It 
occurs not only across the membranes of living cells, but also as a 
mechanism of transport into and out of organs in the body, such as kidney 
tubulus, the intestines, and blood capillaries, where also the hydrostatic 
pressure difference is important. 

There exist many problems where the effects of hydrodynamic flow 
and osmosis combine/v'8) The lattice gas automata (LGA) seem par- 
ticularly well suited for this type of application: It has hydrodynamic 
behavior and, since it is a perticle-based model, it supports a natural defini- 
tion of entropy and chemical potential. This is true also for the lattice 
Boltzmann model (9'1~ and for the lattice BGK model recently introduced 
by Qian e t  al. (~1~ We start out, however, isolating the effect of osmosis, i.e., 
we focus on the equilibrium situation where osmosis supports a hydrostatic 
pressure difference, and where there is no flow. We calculate this pressure 
difference (or rather density difference) and the fluctuations in this quantity 
from the entropy function for the lattice gas. These results are then 
compared with those of simulation. These calculations provide a simple 
example of how concepts of equilibrium statistical mechanics can be 
employed within the framework of the lattice gas model. 

Finally, we study the osmotic flow perpendicular to the membrane. In 
this case the system is not in equilibrium. We calculate the osmotic 
permeability of the membrane using an assumption of local equilibrium, 
and compare the theoretical result with the results of simulation. 

2. O S M O T I C  PRESSURE 

We use a lattice as shown in Fig. 1, divided into two parts by a semi- 
permeable wall that blocks red particles, but lets blue particles through. 
For every time step, particles first collide at the lattice sites and then 
propagate to a nearest neighbor site. 

The lattice gas model we have chosen is a two-color version of the 
FHP-II I  model/~2~ At each site there can be at most seven particles 
distributed over the seven available velocities (cells) ci, where c 0 = 0  
and el through c6 are the unit vectors connecting neighboring sites on the 
lattice. The vector el points downward to the right and the other ei are 
labeled counterclockwise. The configuration at a site x is denoted 
s (x ) =  (r(x), b(x)), where r =  {ri, i = 0  ..... 6} and b =  {bi, i = 0  ..... 6} and r~ 
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Fig. 1. The state of the lattice before and after collisions. Red particles are represented by 
solid arrows and circles, while blue particles are represented by open symbols. The membrane 
collisions are implemented along the vertical midline of the lattice reflecting red particles 
180 deg. The red particles are therefore confined to the left of this midline. 

(bi) is a Boolean variable indicating the presence of a red (blue) particle 
with velocity ei. The  variables r~ and bi cannot  s imul taneously  equal  one. 

In this model  where particles are either at rest or  move  with unit 
velocity, the equat ion  of state is has no t empera tu re  dependence,  and has 
the simple form (12~ 

p=3p (1) 

where p is the pressure and p is the site density of particles. 
The  interpart icle collision rules are such that  all ou tput  configurat ions 

having the same number  of red and blue particles and the same m o m e n t u m  
as the input  con f igu ra t i on  are chosen with the same probabil i ty.  The 
collision rules therefore satisfy the condi t ion 

A(s ~ s ' )  = 1 for all s '  (2) 
s 

which is known as semi-detailed balance. A(s ~s') is the probabi l i ty  that  
a collision brings the configurat ion s into s '  (in fact, the collision rules also 
satisfy detailed balance).  

In addi t ion to conserving color  and linear m o m e n t u m ,  the collisions 
also conserve the unphysical  s taggered m o m e n t u m .  (13 15) The  par t ic le-wal l  
collisions, however,  conserve neither s taggered nor  linear m o m e n t u m ,  so 
the only quanti t ies tha t  are conserved globally are the numbers  of red and 
blue particles. 

The  conservat ion  laws and the semi-detailed balance form the entire 
basis for the statistical analysis which follows. Conserva t ion  of the total  
amoun t s  of  bo th  red and blue particles means  that  only states [a  state is 
given by the set of  all the configurat ions s(x)  on the lat t ice] with the given 
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amounts of red and blue will be available for the lattice gas in the course 
of time, while semi-detailed balance means that if every such state is 
equally probable at the time t, this will also be the case at the time t + 1. 
A time step includes both the propagation step and the collision step. 

Assuming therefore that the equilibrium situation is adequately 
described by an ensemble where every state having the given total amounts 
of red (R) and blue (B) is equally represented, every state is equally prob- 
able. The probability P(ri, be) for the occupation numbers (re, be) at a given 
cell is then simply proportional to the number of states ( 2 ( R - r e ,  B - b e )  
available to the rest of the system: 

P(ri, bi) ~ ~'2(R - ri, B - bi) (3) 

Note that since the equilibrium state is homogeneous, P(re, be) is position 
independent. The entropy S of the gas as a whole is defined as 

S = In (2 (4) 

and the chemical potentials pr and /~b are defined as 

OS OS 
# r = "  ~R'u #b-- 0B (5) 

The entropy defined above is (apart from a sign and a constant term) 
identical to the equilibrium value of the information measure introduced by 
H6non. (16) This can be shown by actually counting the states available to 
the system. By taking the logarithm of Eq. (3), carrying out a Taylor 
expansion to first order in r i and bi, and normalizing, we find that 

P(ri, b i ) = z  leUrri+ubbi (6) 

where z is the one-particle partition function 

z =  ~ '  e ~rr'+u~b' (7) 
ri,bi 

The prime on the summation symbol indicates that the term with r e = b~ = 1 
is not included in the summation. The chemical potentials are easily 
expressed by the average number of red and blue particles per cell using the 
relations 

dr = Y,' reP(r,  be) (8) 
r,.~i 

db = Z '  beP(re, bi) (9) 
ri, bi 
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This gives 

1 - d  
/ - / r  = In - -  

dr 

1 - d  
#b = In - -  d~ 

(lO) 

where d =  d r + db E [-0, 1 ] is the total density per cell. 
Having obtained the dependence of the equilibrium distribution on 

the chemical potentials, we now turn to the computation of the osmotic 
pressure. At equilibrium the color will be distributed in such a way that the 
total entropy is maximized. In the case where a semipermeable wall allows 
only blue particles to move freely, this means that the equilibrium condi- 
tion between the two parts of the lattice (numbered 1 and 2) is given by 

#bl = #b2 (11 ) 

This equilibrium condition can then be written in the form 

1 - -  d 1 1 - -  d 2 
(12) 

db 1 db 2 

We did not have to determine the entropy S in order to write down 
this equation. By rewriting Eq. (12) as 

(1 - d x )  d~2 = (1 --d2) db~ (13) 

it is recognized as the condition that the probability of a blue particle 
crossing the semipermeable wall from left to right must equal the probabil- 
ity of crossing in the other direction. (The probability of having a particle 
pass the wall from a given cell is the probability of having a particle at that 
cell times the probability of having a vacant cell at the other side.) 

1 Defining the average blue density as db = 5(dbl + db2), w e  obtain from 
Eq. (12) the density difference 

A d = d l - d 2  = 1 2__dr/dr  (14) 

In Fig. 2, Ad is shown as a funcUon of dr. Two conflicting effects come 
into play: The effect of the maximization of the entropy tends to increase 
the density difference and the effect of the exclusion principle tends to 
decrease it. Without the exclusion principle Ad would be a linear function 
of dr, while Fig. 2 shows curves falling off from linear behavior with 
increasing densities. 
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Fig. 2. The density difference Ad as a function of the density of red d r in the left part of the 
lattice (see Fig. 1). The solid curves give the theoretical result [Eq. (14)] while the dots give 
the simulation values obtained by time averaging over 4000 time steps. The average blue 
density db has the values 1/8, 1/4, 1/2, and 3/4 from top to bottom. 

The simulations were carried out on a 100 x 50 lattice and the densities 
were averaged over 4000 time steps after the system had reached equi- 
librium. 

The system was initialized with values of the densities different from 
the equilibrium values by choosing the density of blue in the mixed part as 
low as possible. The approach to equilibrium is then a two-step process: 
First a sound wave, caused by the free expansion of the blue particles into 
the mixed area of lower density, evens out the pressure difference between 
the two parts. On the 100 x 50 lattice used this wave typically equilibrates 
by 200 time steps. Then the red and blue components start to mix. Being 
controlled by diffusion, this process is much slower, taking approximately 
3000 time steps to reach equilibrium. 

We turn now to the calculation of the fluctuation in the density 
difference. Since there are no variations in the density of red dr, variations 
in the density difference 6(Ad) are caused solely by variations in the blue 
densities, 

6( Ad) = 3dbx - 3db2 (15) 

But since the total number of blue particles is conserved, 

•db2 = --6dbl (16)  

the mean square fluctuation in the density difference can be written 

( 62(Ad) ) = 4 (  (~2dbl ) (17) 
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Due to semi-detailed balance the probability P of finding the system with 
a certain value of a given parameter, in this case dbl, is proportional to the 
number of states available to the system for that particular value: 

P(dbi ) ~ [2(dbl ) = e s(ael) (18) 

Normalization then gives 

P(ab, ) = P(db~ ) e-~S (19) 

where we have defined the increment AS as 

1 ~2S 
A S = S ( d b x ) - S ( d b , ) ~  20d~ 1 (db~--dbl) 2 (20) 

Thus the probability function P(dbl) is Gaussian and the mean square 
fluctuation is therefore 

62db~ = \c3d~1// (2]) 

The derivatives are evaluated at the mean value dbl=dbl .  Again it is 
actually not required to count the number of states, since 

~2S ~2S1 ~2S2 (~bl  ~b2 x~ 
OdZl-~dZl +-~b2= g \Odbl +-~b2) (22) 

where we have introduced the number of cells V in each part of the lattice. 
Substituting the expressions for the chemical potentials, Eq. (10), into 
Eq. (22) gives 

02S/~d21 = - V ( 1 / ( l  - d l ) +  l/dbl + 1/(1 - d 2 ) +  1/db2) (23) 

Introducing in addition to d b the average total density 

d =  �89 + d2) (24) 

and using the equilibrium condition #b~ = #b2, a straightforward calcula- 
tion gives the fluctuation in terms of these nonfluctuating variables: 

1 1 6 d b ( 1 - d r ) ( 1 - d  ) 
32Ad-- V (2-- dr) 3 (25) 

In Fig. 3 the curves obtained from this expression are shown together 
with the corresponding values obtained from simulations. Again the 

822/68/3-4-12 
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Fig. 3. The mean square fluctuation in the density difference (g;2Ad) multiplied by the 
number  of cells V in one of the lattices, as a function of the density of red dr when db = 1/2. 
The dots give the simulation values obtained by time averaging over 20000 time steps. 

exclusion principle is seen to play a dominating role: As dr--+ 1, the 
lattice is being filled up and the fluctuations are suppressed. The deviations 
from the curves obtained by theory seem to be solely a result of statistical 
uncertainties and decrease with increasing time averaging. 

3. Osmot ic  F low 

Having examined the osmotic pressure in a system of fixed volume, we 
turn now to the analysis of the same system with fixed pressure. We con- 
sider the situation where there is no hydrostatic pressure difference across 
the membrane. The lattice gas will then mimic the flow from a reservoir of 
solvent into a reservoir of solution at the same pressure. We introduce a 
variable porosity ~b, defined as the fraction of membrane sites being 
permeable to blue particles. The membrane is still impermeable to red 
particles. The results of the previous section, where we assumed ~b= 1, 
will still be valid in the case that ~b # 1 because they do not depend on the 
number of permeable sites. 2 

The boundary conditions, as seen by a color-blind observer, are peri- 
odic in all directions. But red particles leaving the right wall and entering 
the unmixed area are colored blue (the mixed area is now the right half of 
the lattice), while a specified fraction of the blue particles entering the 
mixed area are colored red. These boundary conditions ensure that there is 
no pressure difference across the membrane, and that there is a fixed con- 
centration of red particles at the boundary of the mixed region. Initializing 

2 Changing ~b in the previous context will be equivalent to changing the length of the 
membrane. 
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the system with a homogeneous mixture, there will be a flow of blue 
particles into the mixture, diluting it close to the membrane. Red particles 
will diffuse in the opposite direction of the flow, and, at steady state, the 
transport of red particles due to advection will equal the transport due to 
diffusion. Depending on the flow velocity, blue particles will receive a net 
momentum input from the membrane which is opposite and equal to 
the net momentum received by the red particles at steady state. 

Before turning to the derivation of the steady-state current across the 
membrane, we need to describe the concentration boundary layer, i.e., the 
spatial dependence in the concentration of red particles. The site density of 
red particles pr(x, t), defined as 

6 

fir = 2 Ri ( 2 6 )  
i = o  

where R,. = ( r i )  is the average occupation number in cell i, can be shown 
to obey the convection diffusion equation ~2'17) 

0pr 
~3---;- + u" Vpr = V .  (D(p)  Vpr) (27) 

where D is the self-diffusion coefficient, p is the average uncolored site 
density 

6 

P= 2 Ui ( 2 8 )  
i = o  

and u is the average flow velocity defined through the relation 

6 

P u= 2 eiNi (29) 
i = 0  

N~ = R~ + B~, where Bi is the average cell density of blue particles. In ref. 1 
it is shown that the flow velocity u satifies the incompressible 
Navier-Stokes equation. 

Equation (27) is derived by a Chapman-Enskog expansion in 
gradients ~ and relies on the assumption that the lattice gas may be set up 
with a separation between the time scale, the scale of spatial variations of 
Pr, and the lattice constant. It is also assumed that flow velocity u is small. 
Specifically, this means that when time is measured in units of simulation 
time steps and distance in units of the lattice constant, we have 

~?P-----~ = o(~ 2) (30) 
Ot 

Vp, = o(e) (31) 

u = o(~) (32) 
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where e is a sufficiently small number. When we express mathematically the 
fact that the (average) number of red particles is conserved in both the 
collision and the propagation step, Eq. (27) results from a second-order 
expansion in e. The diffusion coefficient D(p) may be computed using the 
Boltzmann approximation, which assumes that particles entering a colli- 
sion are uncorrelated. This has been done by several authors (2'17'18) for 
various choices of collision rules. We quote here the result obtained by 
d'Humi6res et al.(2): 

where 

6 ( 1  ~)  (33) 
D = ~  1-~c 

35d 2 35d 3 7d 5 d 6 
K= 1 - 7 d + ~ -  3 t- 7 d 4 - ~ - + 3  - (34) 

and d = p/7 is the average cell density. 
Integrating Eq. (27) over an arbitrary area of the lattice (regarding the 

densities and velocity as continuous functions being sampled at the nodes 
of the lattice), we obtain the mass current of red particles 

2 
Jr --= - ~  (Pr u -- DVpr) (35) 

2/,,/-3 factor is the inverse of the area per site of where the hexagonal a 

lattice. 
At steady state the current of red particles vanishes: 

pru - DVpr = 0 (36) 

and we obtain a boundary layer of an exponential character: 

p.(x) = p r ( L )  e (x L)./I~ (37) 

where x is the distance measured from the membrane and L is the distance 
between the boundary and the membrane. 

The mass transport j across a single membrane site, at position x, 
during a time step is solely due to the transport of blue particles, and it can 
be written 

J= E b,(x,t+)- E b,(x,t+) (38) 
i = 1 , 2  i = 4 , 5  
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when the lattice orientation is as shown in Fig. 1. The occupation numbers 
b~(x, t + ) =  0 or 1 are the number of blue particles in cell i after collisions. 
Expressing j by the precollision occupation numbers we find the interaction 
between the membrane and the gas, 

i ,2 i=4,5 

Here r/= 1 if the site is permeable to blue particles (open) and ~/= 0 if it 
is impermeable (closed). In the simulations r/ is chosen by generating a 
random number such that ( t / ) =  ~b. The value of t/ will therefore be inde- 
pendent of the occupation numbers. We will also employ the Boltzmann 
approximation, i.e., assume that the precollision occupation numbers are 
statistically independent of each other, so that averages of products can be 
written as products of averages. Using this assumption and the fact that the 
flow must be perpendicular to the membrane, we find that the average 
mass current J =  ( j )  across the membrane takes the form 

J =  2 ~ [ B , ( I -  N4) - 94(1 --  N1)] (40) 

In steady state the net momentum input from the membrane must be 
zero since the flow encounters no other resistance than that from the 
membrane. This indicates that we can assume that the equilibrium distribu- 
tion N~q(p, u) pertaining in the bulk of the gas also describes correctly the 
uncolored distribution close to and on the membrane. This assumption is 
not obvious, since the membrane collision rules do not satisfy semi-detailed 
balance, and it is a priori conceivable that there would be a density 
variation close to the membrane. The equilibrium distribution N~q(p, u) is 
a Fermi-Dirac distribution ~12) which to first order in u can be written 

Ni(d,  u) = d(1 + ~u" ci) (41) 

As before, we shall denote the part of the lattice containing exclusively blue 
particles as part 1 and the part containing both colors as part 2. The 
uncolored distribution N i is the same in both parts, whereas the colored 
distributions are not: While B1 = N 1 on the membrane, since it describes a 
population of particles that are propagated from region 1, B 4 = N 4 -  R 4 

depends on the concentration of red particles in region 2. In this region Ri 
depends on the concentration gradient as well as the velocity. According to 
Eq. (32), these quantities are of first order in e. To this order R i takes the 
form 

~l~i= Req + ~'/(P)(Ci ~  Or "]- O(~2) (42)  
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where 

Re q = Co Neq (43) 

and the form of the gradient correction follows from symmetry reasons: a 
combined rotation of re/3 of both ei and Vpr m u s t  leave Ri invariant. The 
concentration Co is defined as 

Co = p~ (44) 
P 

where Pr and p are measured at x = 0. The factorized form of Eq. (43) is 
due to the completely random redistribution of color in the collision step. 
By performing the gradient expansion leading to Eq. (27), we can identify 

through the relation 

D =  - ( 3 0 +  3)  (45) 

Also, since the number of blue particles is conserved everywhere and the 
mass current is due to the transport of blue particles alone, we have 

2 14 
J = ~  2 cixBi ='-'=du (46) 

i = 0 , 6  ,,,/3 

in both regions. Thus, using Eq. (36) to express Vpr by u and substituting 
u from Eq. (46) and ~k from Eq. (45) into Eq. (42), we obtain 

I'd 3J "~ Ri=Co~ + - ~ )  (47) 

when i = 4 or 5. Likewise, the uncolored distribution can be expressed by 
J as 

Ni = d_+ �88 (48) 

The strategy now is to substitute the distributions obtained as functions of 
J into Eq. (40) and solve for J. However, for practical purposes we express 
the result by the concentration C1 -- C(x--e l )  next to the membrane rather 
than by Co = C(0) which is assumed to be measured on the membrane. To 
first order in gradients we have 

C1 = Co + _1 (c~- V) P r  (49) 
P 

which by Eq. (36) takes the form 

(50) 
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Substituting Co from Eq. (50) into Eq. (47), we can write everything on the 
right-hand side of Eq. (40) in terms of J, D, and ~b and solve for J. Keeping 
only first-order terms in J, this gives 

J=tr 1 (51) 

where the osmotic permeability •o is given by 

4d( 1 - d) 
(52) 

~c~ = 2(1 - ~b) + [ d +  (1 - d) 3/14D] (bC1 

It is seen that the permeability has a dependence on the concentration C1. 
In simulations, however, the product ~bC1 will always be small. The current 
will therefore receive only a small correction to linear behavior in C1. It is 
also observed that the permeability increases with increasing diffusivity of 
the gas. This is not surprising, since the diffusivity affects the transport of 
red particles from the neighboring sites to the membrane. 

A flow parallel to the membrane will be slowed down by the 
membrane collision rules since these give a 180 deg reflection for all but a 
fraction ( 1 -  ~b) of the blue particles. This rule is known to give a nonslip 
boundary condition. Also, gradients in the velocity field will be of second 
order in e. Thus, we expect that the above result will be valid to a good 
approximation even in this more general case. 

The predicted current given in Eqs. (51) and (52) is obtained on the 
basis of the same assumption and properties of the gas as the transport 
equation (27). Both equations express the conservation of color in the gas; 
Eq. (27) is obtained directly from the local conservation law, and Eqs. (51) 
and (52) rely on the fact that the mass current of blue particles in the bulk 
of the gas is the same as the current on the membrane. 

4. S I M U L A T I O N S  

The simulations were performed on a 40 x 100 lattice with an average 
cell density d--0.5, and time averages were taken over 50,000 time steps. 
The concentration of red particles at the membrane was set indirectly by 
setting it at the boundary where it was varied from 0 to 1. As diffusion is 
the only mechanism of transport for the red solute particles, the lattice had 
to be small in the direction of the flow in order to get a sufficiently large 
concentration at the membrane. The size of the lattice still gives concentra- 
tion gradients less than 0.05. The measurements shown in Fig. 4 confirm 
that the concentration boundary layer is indeed of an exponential character 
as predicted in Eq. (37). The plot shows ln[C(x)]/u as a function of the 
distance x from the membrane when the boundary concentrations 
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Fig. 4. The function ln[C(x)]/u as a function of x. The small dots correspond to the value 
of the porosity ~b = 0.2, the triangles to ql = 0.35, and the larger circles to ~b = 0.5. The solid line 
is a straight line fit. The velocity u is obtained by measuring the mass current J, which is 
shown in Fig. 6, and using Eq. (46) to obtain u. 

C(L) = 1. T h e  ve loc i ty  u is o b t a i n e d  by m e a s u r i n g  the  mass  cu r r en t  J and  

us ing  Eq.  (46). T h e  d a t a  c o r r e s p o n d i n g  to ~b=0.2,  0.35, a n d  0.5 are  

c o l l a p s e d  on  one  curve ,  wh ich  by Eq.  (37) has  the  s lope  lID. T h e  va lue  of  

the  d i f fus ion coeff ic ient  D = 0 .290- t -0 .004 o b t a i n e d  by  d o i n g  a s t ra igh t - l ine  

fit o f  these  d a t a  is wi th in  2 %  of  the  C h a p m a n  E n s k o g  va lue  ca l cu l a t ed  

f r o m  Eq.  (34), 

D c E =  0.297 (53) 
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Fig. 5. The cell distribution function N i as a function of the lattice directions, labeled with 
i, for the membrane sites and the two nearest neighboring sites. The membrane sites are 
represented by circles and the two neighboring rows are represented by triangles. The solid 
line is obtained from Eq. (41). 
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This shows that both the scale separation assumption and the Boltzmann 
approximation are reasonably good in the present context. 

For a given input configuration to a collision there are in general 
several possible output configurations (35 at most) consistent with the con- 
servation of the two colors and momentum. In the simulations the output 
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Fig. 6. The current of blue particles across the membrane  J = (14/x/-3 du as a function of the 
concentration of red particles C 1 next to the membrane.  The porosity r ranges from 0.2 
through 0.35 to 0.5 from bot tom to top in (A) and from 0.6 through 0.75 to 0.9 from bot tom 
to top in (B). Solid lines show the theoretical values given by Eqs. (51) and (52); the dots 
represent values obtained by simulations. 
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configurations were chosen in a stochastic manner using a quasi random 
number. For efficiency reasons we also attempted to select the output con- 
figurations by a counter variable which was increased by one for every site 
update. This procedure gives a deterministic lattice gas. It also gives a 
strongly nonergodic behavior. Periodic variations of the order 5% in the 
density profile p(x) and characteristic steps in the concentration profile 
C(x) did not vanish with increasing time averaging. 

Figure 5 shows measurements of the cell distribution function Ni con- 
firming that the Fermi-Dirac equilibrium indeed extends all the way to the 
membrane and that there are no variations in p(x) close to the membrane. 
The solid line shows the theoretical values of Ni calculated from Eq. (41). 
The deviations from the equilibrium values of the populations in the cells 
0, 3, and 6 on the membrane result because the membrane collision rules 
conserve the number of particles in these cells. The time-averaged density 
p(x) shows spatial variations less than 0.001. 

Figure 6 shows the mass current as a function of the concentration C1 
next to the membrane. The dots are results from the simulations, and the 
corresponding solid lines are obtained from Eqs. (51) and (52). The agree- 
ment is seen to be excellent for the values of the porosity ~b = 0.2, 0.35, and 
0.5, where the simulation values are within 1% of the theoretical values. 
In this plot no systematic deviations are observed. For the porosities 
~b = 0.6, 0.75, and 0.9 the theoretical curve is seen to lie slightly under the 
simulation values. This is most probably due to the corrections of second 
order in velocity and gradients that are not included in the expressions for 
the current (51) and (52). It is also seen that the current is very close to 
being linear in C1, confirming that the product ~bCi is small. 

5. C O N C L U S I O N  A N D  SUGGESTIONS FOR FURTHER 
APPL ICAT IONS OF THE M O D E L  

We have investigated the osmotic interaction across a semipermeable 
membrane at constant volume and constant pressure, respectively, using 
simple boundary conditions. We have shown that the model is well 
described by the theory introduced, both for the equilibrium pressure dif- 
ference and for the nonequilibrium flow across the membrane. The model 
can be used to study a variety of more complicated systems with externally 
imposed flows and concentration gradients. From a biological point of 
view ot might be of particular interest to examine concentration boundary 
layers and the resulting osmotic flow in different hydrodynamic settings. 
Some analytic results due to Pedley ~7'8) exist for stagnation point flow 
directed toward an infinite membrane and for flow parallel to a semi- 
infinite membrane. The derivations of these results are quite elaborate and 
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valid only in limited regimes. Other flows of interest are flows driven by an 
imposed difference in buoyancy between the different particle species and 
flows with external stirring. By introducing body forces close to the 
membrane,  one might be able to mimic the combined effect of electrostatic 
and osmotic interactions known to exist over living cell membranes. 

By introducing a position-dependent porosity, an inhomogeneous flow 
field will result. For  low Reynolds number  the transport  of solvent toward 
the membrane will still be due to diffusion alone. But increasing the 
Reynolds number will lead to a transition to convection driven by the 
variations in the osmotic flow. Presumably this transition will be quite 
pronounced, since the convection will increase the concentration of solute 
at the membrane,  thereby increasing the osmotic flow. 

From the theoretical point of view the semipermeable membrane 
might be interesting as a statistical mechanical toy system. For  instance, by 
extending the model to include nontrivial energy conservation and giving 
the membrane  a specific heat conductivity, one could study the combined 
effects of concentration and temperature gradients. In this context one 
might be able to derive Onsager-type relations in a lattice gas. 
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